# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
__all__ = ['rhs_generate', 'rhs_clear']
import os
import numpy as np
from types import FunctionType, BuiltinFunctionType
from functools import partial
from qutip.cy.codegen import Codegen
from qutip.solver import Options, config, solver_safe
from qutip.qobj import Qobj
from qutip.superoperator import spre, spost
from qutip.interpolate import Cubic_Spline
[docs]def rhs_clear():
    """
    Resets the string-format time-dependent Hamiltonian parameters.
    Parameters
    ----------
    Returns
    -------
    Nothing, just clears data from internal config module.
    """
    # time-dependent (TD) function stuff
    config.tdfunc = None     # Placeholder for TD RHS function.
    config.colspmv = None    # Placeholder for TD col-spmv function.
    config.colexpect = None  # Placeholder for TD col_expect function.
    config.string = None     # Holds string of variables to be passed to solver
    config.tdname = None     # Name of td .pyx file (used in parallel mc code)
    if "sesolve" in solver_safe:
        del solver_safe["sesolve"]
    if "mesolve" in solver_safe:
        del solver_safe["mesolve"]
    if "mcsolve" in solver_safe:
        del solver_safe["mcsolve"] 
[docs]def rhs_generate(H, c_ops, args={}, options=Options(), name=None,
                 cleanup=True):
    """
    Generates the Cython functions needed for solving the dynamics of a
    given system using the mesolve function inside a parfor loop.
    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    c_ops : list
        ``list`` of collapse operators.
    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.
    options : Options
        Instance of ODE solver options.
    name: str
        Name of generated RHS
    cleanup: bool
        Whether the generated cython file should be automatically removed or
        not.
    Notes
    -----
    Using this function with any solver other than the mesolve function
    will result in an error.
    """
    config.reset()
    config.options = options
    if name:
        config.tdname = name
    else:
        config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num)
    Lconst = 0
    Ldata = []
    Linds = []
    Lptrs = []
    Lcoeff = []
    Lobj = []
    # loop over all hamiltonian terms, convert to superoperator form and
    # add the data of sparse matrix represenation to
    msg = "Incorrect specification of time-dependence: "
    for h_spec in H:
        if isinstance(h_spec, Qobj):
            h = h_spec
            if not isinstance(h, Qobj):
                raise TypeError(msg + "expected Qobj")
            if h.isoper:
                Lconst += -1j * (spre(h) - spost(h))
            elif h.issuper:
                Lconst += h
            else:
                raise TypeError(msg + "expected operator or superoperator")
        elif isinstance(h_spec, list):
            h = h_spec[0]
            h_coeff = h_spec[1]
            if not isinstance(h, Qobj):
                raise TypeError(msg + "expected Qobj")
            if h.isoper:
                L = -1j * (spre(h) - spost(h))
            elif h.issuper:
                L = h
            else:
                raise TypeError(msg + "expected operator or superoperator")
            Ldata.append(L.data.data)
            Linds.append(L.data.indices)
            Lptrs.append(L.data.indptr)
            if isinstance(h_coeff, Cubic_Spline):
                Lobj.append(h_coeff.coeffs)
            Lcoeff.append(h_coeff)
        else:
            raise TypeError(msg + "expected string format")
    # loop over all collapse operators
    for c_spec in c_ops:
        if isinstance(c_spec, Qobj):
            c = c_spec
            if not isinstance(c, Qobj):
                raise TypeError(msg + "expected Qobj")
            if c.isoper:
                cdc = c.dag() * c
                Lconst += spre(c) * spost(c.dag()) - 0.5 * spre(cdc) \
                                                   
- 0.5 * spost(cdc)
            elif c.issuper:
                Lconst += c
            else:
                raise TypeError(msg + "expected operator or superoperator")
        elif isinstance(c_spec, list):
            c = c_spec[0]
            c_coeff = c_spec[1]
            if not isinstance(c, Qobj):
                raise TypeError(msg + "expected Qobj")
            if c.isoper:
                cdc = c.dag() * c
                L = spre(c) * spost(c.dag()) - 0.5 * spre(cdc) \
                                             
- 0.5 * spost(cdc)
                c_coeff = "(" + c_coeff + ")**2"
            elif c.issuper:
                L = c
            else:
                raise TypeError(msg + "expected operator or superoperator")
            Ldata.append(L.data.data)
            Linds.append(L.data.indices)
            Lptrs.append(L.data.indptr)
            Lcoeff.append(c_coeff)
        else:
            raise TypeError(msg + "expected string format")
    # add the constant part of the lagrangian
    if Lconst != 0:
        Ldata.append(Lconst.data.data)
        Linds.append(Lconst.data.indices)
        Lptrs.append(Lconst.data.indptr)
        Lcoeff.append("1.0")
    # the total number of liouvillian terms (hamiltonian terms + collapse
    # operators)
    n_L_terms = len(Ldata)
    cgen = Codegen(h_terms=n_L_terms, h_tdterms=Lcoeff, args=args,
                   config=config)
    cgen.generate(config.tdname + ".pyx")
    code = compile('from ' + config.tdname +
                   ' import cy_td_ode_rhs', '<string>', 'exec')
    exec(code, globals())
    config.tdfunc = cy_td_ode_rhs
    if cleanup:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass 
def _td_format_check(H, c_ops, solver='me'):
    """
    Checks on time-dependent format.
    """
    h_const = []
    h_func = []
    h_str = []
    h_obj = []
    # check H for incorrect format
    if isinstance(H, Qobj):
        pass
    elif isinstance(H, (FunctionType, BuiltinFunctionType, partial)):
        pass  # n_func += 1
    elif isinstance(H, list):
        for k, H_k in enumerate(H):
            if isinstance(H_k, Qobj):
                h_const.append(k)
            elif isinstance(H_k, list):
                if len(H_k) != 2 or not isinstance(H_k[0], Qobj):
                    raise TypeError("Incorrect hamiltonian specification")
                else:
                    if isinstance(H_k[1], (FunctionType,
                                           BuiltinFunctionType, partial)):
                        h_func.append(k)
                    elif isinstance(H_k[1], str):
                        h_str.append(k)
                    elif isinstance(H_k[1], Cubic_Spline):
                        h_obj.append(k)
                    elif hasattr(H_k[1], '__call__'):
                        h_obj.append(k)
                    elif isinstance(H_k[1], np.ndarray):
                        h_str.append(k)
                    else:
                        raise TypeError("Incorrect hamiltonian specification")
    else:
        raise TypeError("Incorrect hamiltonian specification")
    # the the whole thing again for c_ops
    c_const = []
    c_func = []
    c_str = []
    c_obj = []
    if isinstance(c_ops, list):
        for k in range(len(c_ops)):
            if isinstance(c_ops[k], Qobj):
                c_const.append(k)
            elif isinstance(c_ops[k], list):
                if len(c_ops[k]) != 2:
                    raise TypeError(
                        "Incorrect collapse operator specification.")
                else:
                    if isinstance(c_ops[k][1], (FunctionType,
                                                BuiltinFunctionType, partial)):
                        c_func.append(k)
                    elif isinstance(c_ops[k][1], str):
                        c_str.append(k)
                    elif isinstance(c_ops[k][1], Cubic_Spline):
                        c_obj.append(k)
                    elif hasattr(c_ops[k][1], '__call__'):
                        c_func.append(k)
                    elif isinstance(c_ops[k][1], np.ndarray):
                        c_str.append(k)
                    elif isinstance(c_ops[k][1], tuple):
                        c_str.append(k)
                    else:
                        raise TypeError(
                            "Incorrect collapse operator specification")
    else:
        raise TypeError("Incorrect collapse operator specification")
    #
    # if n_str == 0 and n_func == 0:
    #     # no time-dependence at all
    #
    if ((len(h_str) > 0 and len(h_func) > 0) or
            (len(c_str) > 0 and len(c_func) > 0)):
        raise TypeError(
            "Cannot mix string and function type time-dependence formats")
    # check to see if Cython is installed and version is high enough.
    if len(h_str) > 0 or len(c_str) > 0:
        pass
        #try:
        #    import Cython
        #except:
        #    raise Exception(
        #        "Unable to load Cython. Use Python function format.")
        #else:
        #    if Cython.__version__ < '0.21':
        #        raise Exception("Cython version (%s) is too old. Upgrade to" +
        #                        " version 0.21+" % Cython.__version__)
    # If only time-dependence is in Objects, then prefer string based format
    if (len(h_func) + len(c_func) + len(h_str) + len(c_str)) == 0:
         h_str += h_obj #Does nothing if not objects
         c_str += c_obj
    else:
        # Combine Hamiltonian objects
        if len(h_func) > 0:
            h_func += h_obj
        elif len(h_str) > 0:
            h_str += h_obj
        #Combine collapse objects
        if len(c_func) > 0:
            c_func += c_obj
        elif len(c_str) > 0:
            c_str += c_obj
    if solver == 'me':
        return (len(h_const + c_const),
                len(h_func) + len(c_func),
                len(h_str) + len(c_str))
    elif solver == 'mc':
        #   H      C_ops    #
        #   --     -----    --
        #   NO      NO      00
        #   NO     STR      01
        #   NO     FUNC     02
        #
        #   STR    NO       10
        #   STR    STR      11
        #
        #   FUNC   NO       20
        #
        #   FUNC   FUNC     22
        if isinstance(H, FunctionType):
            time_type = 3
        # Time-indepdent problems
        elif ((len(h_func) == len(h_str) == 0) and
                (len(c_func) == len(c_str) == 0)):
            time_type = 0
        # constant Hamiltonian, time-dependent collapse operators
        elif len(h_func) == len(h_str) == 0:
            if len(c_str) > 0:
                time_type = 1
            elif len(c_func) > 0:
                time_type = 2
            else:
                raise Exception("Error determining time-dependence.")
        # list style Hamiltonian
        elif len(h_str) > 0:
            if len(c_func) == len(c_str) == 0:
                time_type = 10
            elif len(c_str) > 0:
                time_type = 11
            else:
                raise Exception("Error determining time-dependence.")
        # Python function style Hamiltonian
        elif len(h_func) > 0:
            if len(c_func) == len(c_str) == 0:
                time_type = 20
            elif len(c_func) > 0:
                time_type = 22
            else:
                raise Exception("Error determining time-dependence.")
        return time_type, [h_const, h_func, h_str], [c_const, c_func, c_str]
def _td_wrap_array_str(H, c_ops, args, times):
    """
    Wrap numpy-array based time-dependence in the string-based time dependence
    format
    """
    n = 0
    H_new = []
    c_ops_new = []
    args_new = {}
    if not isinstance(H, list):
        H_new = H
    else:
        for Hk in H:
            if isinstance(Hk, list) and isinstance(Hk[1], np.ndarray):
                H_op, H_td = Hk
                td_array_name = "_td_array_%d" % n
                H_td_str = '(0 if (t > %f) else %s[int(round(%d * (t/%f)))])' %\
                    (times[-1], td_array_name, len(times) - 1, times[-1])
                args_new[td_array_name] = H_td
                H_new.append([H_op, H_td_str])
                n += 1
            else:
                H_new.append(Hk)
    if not isinstance(c_ops, list):
        c_ops_new = c_ops
    else:
        for ck in c_ops:
            if isinstance(ck, list) and isinstance(ck[1], np.ndarray):
                c_op, c_td = ck
                td_array_name = "_td_array_%d" % n
                c_td_str = '(0 if (t > %f) else %s[int(round(%d * (t/%f)))])' %\
                    (times[-1], td_array_name, len(times) - 1, times[-1])
                args_new[td_array_name] = c_td
                c_ops_new.append([c_op, c_td_str])
                n += 1
            else:
                c_ops_new.append(ck)
    if not args_new:
        args_new = args
    elif isinstance(args, dict):
        args_new.update(args)
    else:
        raise ValueError("Time-dependent array format requires args to " +
                         "be a dictionary")
    return H_new, c_ops_new, args_new