Source code for qutip.qip.operations.gates

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
import numbers
from collections.abc import Iterable
from itertools import product, chain
from functools import partial, reduce
from operator import mul

import numpy as np
import scipy.sparse as sp
from qutip.qobj import Qobj
from qutip.operators import identity, qeye, sigmax, sigmay, sigmaz
from qutip.tensor import tensor
from qutip.states import fock_dm


__all__ = ['rx', 'ry', 'rz', 'sqrtnot', 'snot', 'phasegate', 'qrot',
           'x_gate', 'y_gate', 'z_gate', 'cy_gate', 'cz_gate', 's_gate',
           't_gate', 'qasmu_gate', 'cs_gate', 'ct_gate', 'cphase', 'cnot',
           'csign', 'berkeley', 'swapalpha', 'swap', 'iswap', 'sqrtswap',
           'sqrtiswap', 'fredkin', 'molmer_sorensen',
           'toffoli', 'rotation', 'controlled_gate',
           'globalphase', 'hadamard_transform', 'gate_sequence_product',
           'gate_expand_1toN', 'gate_expand_2toN', 'gate_expand_3toN',
           'qubit_clifford_group', 'expand_operator']

#
# Single Qubit Gates
#


def x_gate(N=None, target=0):
    """Pauli-X gate or sigmax operator.

    Returns
    -------
    result : :class:`qutip.Qobj`
        Quantum object for operator describing
        a single-qubit rotation through pi radians around the x-axis.

    """
    if N is not None:
        return gate_expand_1toN(x_gate(), N, target)
    return sigmax()


def y_gate(N=None, target=0):
    """Pauli-Y gate or sigmay operator.

    Returns
    -------
    result : :class:`qutip.Qobj`
        Quantum object for operator describing
        a single-qubit rotation through pi radians around the y-axis.

    """
    if N is not None:
        return gate_expand_1toN(y_gate(), N, target)
    return sigmay()


def cy_gate(N=None, control=0, target=1):
    """Controlled Y gate.

    Returns
    -------
    result : :class:`qutip.Qobj`
        Quantum object for operator describing the rotation.

    """
    if (control == 1 and target == 0) and N is None:
        N = 2

    if N is not None:
        return gate_expand_2toN(cy_gate(), N, control, target)
    return Qobj([[1, 0, 0, 0],
                 [0, 1, 0, 0],
                 [0, 0, 0, -1j],
                 [0, 0, 1j, 0]],
                dims=[[2, 2], [2, 2]])


def z_gate(N=None, target=0):
    """Pauli-Z gate or sigmaz operator.

    Returns
    -------
    result : :class:`qutip.Qobj`
        Quantum object for operator describing
        a single-qubit rotation through pi radians around the z-axis.

    """
    if N is not None:
        return gate_expand_1toN(z_gate(), N, target)
    return sigmaz()


def cz_gate(N=None, control=0, target=1):
    """Controlled Z gate.

    Returns
    -------
    result : :class:`qutip.Qobj`
        Quantum object for operator describing the rotation.

    """
    if (control == 1 and target == 0) and N is None:
        N = 2

    if N is not None:
        return gate_expand_2toN(cz_gate(), N, control, target)
    return Qobj([[1, 0, 0, 0],
                 [0, 1, 0, 0],
                 [0, 0, 1, 0],
                 [0, 0, 0, -1]],
                dims=[[2, 2], [2, 2]])


def s_gate(N=None, target=0):
    """Single-qubit rotation also called Phase gate or the Z90 gate.

    Returns
    -------
    result : :class:`qutip.Qobj`
        Quantum object for operator describing
        a 90 degree rotation around the z-axis.

    """
    if N is not None:
        return gate_expand_1toN(s_gate(), N, target)
    return Qobj([[1, 0],
                 [0, 1j]])


def cs_gate(N=None, control=0, target=1):
    """Controlled S gate.

    Returns
    -------
    result : :class:`qutip.Qobj`
        Quantum object for operator describing the rotation.

    """
    if (control == 1 and target == 0) and N is None:
        N = 2

    if N is not None:
        return gate_expand_2toN(cs_gate(), N, control, target)
    return Qobj([[1, 0, 0, 0],
                 [0, 1, 0, 0],
                 [0, 0, 1, 0],
                 [0, 0, 0, 1j]],
                dims=[[2, 2], [2, 2]])


def t_gate(N=None, target=0):
    """Single-qubit rotation related to the S gate by the relationship S=T*T.

    Returns
    -------
    result : :class:`qutip.Qobj`
        Quantum object for operator describing a phase shift of pi/4.

    """
    if N is not None:
        return gate_expand_1toN(t_gate(), N, target)
    return Qobj([[1, 0],
                 [0, np.exp(1j*np.pi/4)]])


def ct_gate(N=None, control=0, target=1):
    """Controlled T gate.

    Returns
    -------
    result : :class:`qutip.Qobj`
        Quantum object for operator describing the rotation.

    """
    if (control == 1 and target == 0) and N is None:
        N = 2

    if N is not None:
        return gate_expand_2toN(ct_gate(), N, control, target)
    return Qobj([[1, 0, 0, 0],
                 [0, 1, 0, 0],
                 [0, 0, 1, 0],
                 [0, 0, 0, np.exp(1j * np.pi / 4)]],
                dims=[[2, 2], [2, 2]])


[docs]def rx(phi, N=None, target=0): """Single-qubit rotation for operator sigmax with angle phi. Returns ------- result : qobj Quantum object for operator describing the rotation. """ if N is not None: return gate_expand_1toN(rx(phi), N, target) return Qobj([[np.cos(phi / 2), -1j * np.sin(phi / 2)], [-1j * np.sin(phi / 2), np.cos(phi / 2)]])
[docs]def ry(phi, N=None, target=0): """Single-qubit rotation for operator sigmay with angle phi. Returns ------- result : qobj Quantum object for operator describing the rotation. """ if N is not None: return gate_expand_1toN(ry(phi), N, target) return Qobj([[np.cos(phi / 2), -np.sin(phi / 2)], [np.sin(phi / 2), np.cos(phi / 2)]])
[docs]def rz(phi, N=None, target=0): """Single-qubit rotation for operator sigmaz with angle phi. Returns ------- result : qobj Quantum object for operator describing the rotation. """ if N is not None: return gate_expand_1toN(rz(phi), N, target) return Qobj([[np.exp(-1j * phi / 2), 0], [0, np.exp(1j * phi / 2)]])
[docs]def sqrtnot(N=None, target=0): """Single-qubit square root NOT gate. Returns ------- result : qobj Quantum object for operator describing the square root NOT gate. """ if N is not None: return gate_expand_1toN(sqrtnot(), N, target) return Qobj([[0.5 + 0.5j, 0.5 - 0.5j], [0.5 - 0.5j, 0.5 + 0.5j]])
[docs]def snot(N=None, target=0): """Quantum object representing the SNOT (Hadamard) gate. Returns ------- snot_gate : qobj Quantum object representation of SNOT gate. Examples -------- >>> snot() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = True Qobj data = [[ 0.70710678+0.j 0.70710678+0.j] [ 0.70710678+0.j -0.70710678+0.j]] """ if N is not None: return gate_expand_1toN(snot(), N, target) return 1 / np.sqrt(2.0) * Qobj([[1, 1], [1, -1]])
[docs]def phasegate(theta, N=None, target=0): """ Returns quantum object representing the phase shift gate. Parameters ---------- theta : float Phase rotation angle. Returns ------- phase_gate : qobj Quantum object representation of phase shift gate. Examples -------- >>> phasegate(pi/4) # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 1.00000000+0.j 0.00000000+0.j ] [ 0.00000000+0.j 0.70710678+0.70710678j]] """ if N is not None: return gate_expand_1toN(phasegate(theta), N, target) return Qobj([[1, 0], [0, np.exp(1.0j * theta)]], dims=[[2], [2]])
def qrot(theta, phi, N=None, target=0): """ Single qubit rotation driving by Rabi oscillation with 0 detune. Parameters ---------- phi : float The inital phase of the rabi pulse. theta : float The duration of the rabi pulse. N : int Number of qubits in the system. target : int The index of the target qubit. Returns ------- qrot_gate : :class:`qutip.Qobj` Quantum object representation of physical qubit rotation under a rabi pulse. """ if N is not None: return expand_operator(qrot(theta, phi), N=N, targets=target) return Qobj( [ [np.cos(theta/2.), -1.j*np.exp(-1.j*phi)*np.sin(theta/2.)], [-1.j*np.exp(1.j*phi)*np.sin(theta/2.), np.cos(theta/2.)] ]) def qasmu_gate(args, N=None, target=0): """ QASM U-gate as defined in the OpenQASM standard. Parameters ---------- theta : float The argument supplied to the last RZ rotation. phi : float The argument supplied to the middle RY rotation. gamma : float The argument supplied to the first RZ rotation. N : int Number of qubits in the system. target : int The index of the target qubit. Returns ------- qasmu_gate : :class:`qutip.Qobj` Quantum object representation of the QASM U-gate as defined in the OpenQASM standard. """ theta, phi, gamma = args if N is not None: return expand_operator(qasmu_gate([theta, phi, gamma]), N=N, targets=target) return Qobj(rz(phi) * ry(theta) * rz(gamma)) # # 2 Qubit Gates #
[docs]def cphase(theta, N=2, control=0, target=1): """ Returns quantum object representing the controlled phase shift gate. Parameters ---------- theta : float Phase rotation angle. N : integer The number of qubits in the target space. control : integer The index of the control qubit. target : integer The index of the target qubit. Returns ------- U : qobj Quantum object representation of controlled phase gate. """ if N < 1 or target < 0 or control < 0: raise ValueError("Minimum value: N=1, control=0 and target=0") if control >= N or target >= N: raise ValueError("control and target need to be smaller than N") U_list1 = [identity(2)] * N U_list2 = [identity(2)] * N U_list1[control] = fock_dm(2, 1) U_list1[target] = phasegate(theta) U_list2[control] = fock_dm(2, 0) U = tensor(U_list1) + tensor(U_list2) return U
[docs]def cnot(N=None, control=0, target=1): """ Quantum object representing the CNOT gate. Returns ------- cnot_gate : qobj Quantum object representation of CNOT gate Examples -------- >>> cnot() # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]] """ if (control == 1 and target == 0) and N is None: N = 2 if N is not None: return gate_expand_2toN(cnot(), N, control, target) return Qobj([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]], dims=[[2, 2], [2, 2]])
[docs]def csign(N=None, control=0, target=1): """ Quantum object representing the CSIGN gate. Returns ------- csign_gate : qobj Quantum object representation of CSIGN gate Examples -------- >>> csign() # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j -1.+0.j]] """ if (control == 1 and target == 0) and N is None: N = 2 if N is not None: return gate_expand_2toN(csign(), N, control, target) return Qobj([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]], dims=[[2, 2], [2, 2]])
[docs]def berkeley(N=None, targets=[0, 1]): """ Quantum object representing the Berkeley gate. Returns ------- berkeley_gate : qobj Quantum object representation of Berkeley gate Examples -------- >>> berkeley() # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ cos(pi/8).+0.j 0.+0.j 0.+0.j 0.+sin(pi/8).j] [ 0.+0.j cos(3pi/8).+0.j 0.+sin(3pi/8).j 0.+0.j] [ 0.+0.j 0.+sin(3pi/8).j cos(3pi/8).+0.j 0.+0.j] [ 0.+sin(pi/8).j 0.+0.j 0.+0.j cos(pi/8).+0.j]] """ if (targets[0] == 1 and targets[1] == 0) and N is None: N = 2 if N is not None: return gate_expand_2toN(berkeley(), N, targets=targets) return Qobj([[np.cos(np.pi / 8), 0, 0, 1.0j * np.sin(np.pi / 8)], [0, np.cos(3 * np.pi / 8), 1.0j * np.sin(3 * np.pi / 8), 0], [0, 1.0j * np.sin(3 * np.pi / 8), np.cos(3 * np.pi / 8), 0], [1.0j * np.sin(np.pi / 8), 0, 0, np.cos(np.pi / 8)]], dims=[[2, 2], [2, 2]])
[docs]def swapalpha(alpha, N=None, targets=[0, 1]): """ Quantum object representing the SWAPalpha gate. Returns ------- swapalpha_gate : qobj Quantum object representation of SWAPalpha gate Examples -------- >>> swapalpha(alpha) # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.5*(1 + exp(j*pi*alpha) 0.5*(1 - exp(j*pi*alpha) 0.+0.j] [ 0.+0.j 0.5*(1 - exp(j*pi*alpha) 0.5*(1 + exp(j*pi*alpha) 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]] """ if (targets[0] == 1 and targets[1] == 0) and N is None: N = 2 if N is not None: return gate_expand_2toN(swapalpha(alpha), N, targets=targets) return Qobj([[1, 0, 0, 0], [0, 0.5 * (1 + np.exp(1.0j * np.pi * alpha)), 0.5 * (1 - np.exp(1.0j * np.pi * alpha)), 0], [0, 0.5 * (1 - np.exp(1.0j * np.pi * alpha)), 0.5 * (1 + np.exp(1.0j * np.pi * alpha)), 0], [0, 0, 0, 1]], dims=[[2, 2], [2, 2]])
[docs]def swap(N=None, targets=[0, 1]): """Quantum object representing the SWAP gate. Returns ------- swap_gate : qobj Quantum object representation of SWAP gate Examples -------- >>> swap() # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]] """ if targets != [0, 1] and N is None: N = 2 if N is not None: return gate_expand_2toN(swap(), N, targets=targets) return Qobj([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]], dims=[[2, 2], [2, 2]])
[docs]def iswap(N=None, targets=[0, 1]): """Quantum object representing the iSWAP gate. Returns ------- iswap_gate : qobj Quantum object representation of iSWAP gate Examples -------- >>> iswap() # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+1.j 0.+0.j] [ 0.+0.j 0.+1.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]] """ if targets != [0, 1] and N is None: N = 2 if N is not None: return gate_expand_2toN(iswap(), N, targets=targets) return Qobj([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]], dims=[[2, 2], [2, 2]])
[docs]def sqrtswap(N=None, targets=[0, 1]): """Quantum object representing the square root SWAP gate. Returns ------- sqrtswap_gate : qobj Quantum object representation of square root SWAP gate """ if targets != [0, 1] and N is None: N = 2 if N is not None: return gate_expand_2toN(sqrtswap(), N, targets=targets) return Qobj(np.array([[1, 0, 0, 0], [0, 0.5 + 0.5j, 0.5 - 0.5j, 0], [0, 0.5 - 0.5j, 0.5 + 0.5j, 0], [0, 0, 0, 1]]), dims=[[2, 2], [2, 2]])
[docs]def sqrtiswap(N=None, targets=[0, 1]): """Quantum object representing the square root iSWAP gate. Returns ------- sqrtiswap_gate : qobj Quantum object representation of square root iSWAP gate Examples -------- >>> sqrtiswap() # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 1.00000000+0.j 0.00000000+0.j \ 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.70710678+0.j \ 0.00000000-0.70710678j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000-0.70710678j\ 0.70710678+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j \ 0.00000000+0.j 1.00000000+0.j]] """ if targets != [0, 1] and N is None: N = 2 if N is not None: return gate_expand_2toN(sqrtiswap(), N, targets=targets) return Qobj(np.array([[1, 0, 0, 0], [0, 1 / np.sqrt(2), 1j / np.sqrt(2), 0], [0, 1j / np.sqrt(2), 1 / np.sqrt(2), 0], [0, 0, 0, 1]]), dims=[[2, 2], [2, 2]])
def molmer_sorensen(theta, N=None, targets=[0, 1]): """ Quantum object of a Mølmer–Sørensen gate. Parameters ---------- theta: float The duration of the interaction pulse. N: int Number of qubits in the system. target: int The indices of the target qubits. Returns ------- molmer_sorensen_gate: :class:`qutip.Qobj` Quantum object representation of the Mølmer–Sørensen gate. """ if targets != [0, 1] and N is None: N = 2 if N is not None: return expand_operator(molmer_sorensen(theta), N, targets=targets) return Qobj( [ [np.cos(theta/2.), 0, 0, -1.j*np.sin(theta/2.)], [0, np.cos(theta/2.), -1.j*np.sin(theta/2.), 0], [0, -1.j*np.sin(theta/2.), np.cos(theta/2.), 0], [-1.j*np.sin(theta/2.), 0, 0, np.cos(theta/2.)] ], dims=[[2, 2], [2, 2]]) # # 3 Qubit Gates #
[docs]def fredkin(N=None, control=0, targets=[1, 2]): """Quantum object representing the Fredkin gate. Returns ------- fredkin_gate : qobj Quantum object representation of Fredkin gate. Examples -------- >>> fredkin() # doctest: +SKIP Quantum object: dims = [[2, 2, 2], [2, 2, 2]], \ shape = [8, 8], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]] """ if [control, targets[0], targets[1]] != [0, 1, 2] and N is None: N = 3 if N is not None: return gate_expand_3toN(fredkin(), N, [control, targets[0]], targets[1]) return Qobj([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]], dims=[[2, 2, 2], [2, 2, 2]])
[docs]def toffoli(N=None, controls=[0, 1], target=2): """Quantum object representing the Toffoli gate. Returns ------- toff_gate : qobj Quantum object representation of Toffoli gate. Examples -------- >>> toffoli() # doctest: +SKIP Quantum object: dims = [[2, 2, 2], [2, 2, 2]], \ shape = [8, 8], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]] """ if [controls[0], controls[1], target] != [0, 1, 2] and N is None: N = 3 if N is not None: return gate_expand_3toN(toffoli(), N, controls, target) return Qobj([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]], dims=[[2, 2, 2], [2, 2, 2]])
# # Miscellaneous Gates #
[docs]def rotation(op, phi, N=None, target=0): """Single-qubit rotation for operator op with angle phi. Returns ------- result : qobj Quantum object for operator describing the rotation. """ if N is not None: return gate_expand_1toN(rotation(op, phi), N, target) return (-1j * op * phi / 2).expm()
[docs]def controlled_gate(U, N=2, control=0, target=1, control_value=1): """ Create an N-qubit controlled gate from a single-qubit gate U with the given control and target qubits. Parameters ---------- U : Qobj Arbitrary single-qubit gate. N : integer The number of qubits in the target space. control : integer The index of the first control qubit. target : integer The index of the target qubit. control_value : integer (1) The state of the control qubit that activates the gate U. Returns ------- result : qobj Quantum object representing the controlled-U gate. """ if [N, control, target] == [2, 0, 1]: return (tensor(fock_dm(2, control_value), U) + tensor(fock_dm(2, 1 - control_value), identity(2))) U2 = controlled_gate(U, control_value=control_value) return gate_expand_2toN(U2, N=N, control=control, target=target)
[docs]def globalphase(theta, N=1): """ Returns quantum object representing the global phase shift gate. Parameters ---------- theta : float Phase rotation angle. Returns ------- phase_gate : qobj Quantum object representation of global phase shift gate. Examples -------- >>> phasegate(pi/4) # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0.70710678+0.70710678j 0.00000000+0.j] [ 0.00000000+0.j 0.70710678+0.70710678j]] """ data = (np.exp(1.0j * theta) * sp.eye(2 ** N, 2 ** N, dtype=complex, format="csr")) return Qobj(data, dims=[[2] * N, [2] * N])
# # Operation on Gates # def _hamming_distance(x, bits=32): """ Calculate the bit-wise Hamming distance of x from 0: That is, the number 1s in the integer x. """ tot = 0 while x: tot += 1 x &= x - 1 return tot
[docs]def hadamard_transform(N=1): """Quantum object representing the N-qubit Hadamard gate. Returns ------- q : qobj Quantum object representation of the N-qubit Hadamard gate. """ data = 2 ** (-N / 2) * np.array([[(-1) ** _hamming_distance(i & j) for i in range(2 ** N)] for j in range(2 ** N)]) return Qobj(data, dims=[[2] * N, [2] * N])
def _flatten(lst): """ Helper to flatten lists. """ return [item for sublist in lst for item in sublist] def _mult_sublists(tensor_list, overall_inds, U, inds): """ Calculate the revised indices and tensor list by multiplying a new unitary U applied to inds. Parameters ---------- tensor_list : list of Qobj List of gates (unitaries) acting on disjoint qubits. overall_inds : list of list of int List of qubit indices corresponding to each gate in tensor_list. U: Qobj Unitary to be multiplied with the the unitary specified by tensor_list. inds: list of int List of qubit indices corresponding to U. Returns ------- tensor_list_revised: list of Qobj List of gates (unitaries) acting on disjoint qubits incorporating U. overall_inds_revised: list of list of int List of qubit indices corresponding to each gate in tensor_list_revised. Examples -------- First, we get some imports out of the way, >>> from qutip.qip.operations.gates import _mult_sublists >>> from qutip.qip.operations.gates import x_gate, y_gate, toffoli, z_gate Suppose we have a unitary list of already processed gates, X, Y, Z applied on qubit indices 0, 1, 2 respectively and encounter a new TOFFOLI gate on qubit indices (0, 1, 3). >>> tensor_list = [x_gate(), y_gate(), z_gate()] >>> overall_inds = [[0], [1], [2]] >>> U = toffoli() >>> U_inds = [0, 1, 3] Then, we can use _mult_sublists to produce a new list of unitaries by multiplying TOFFOLI (and expanding) only on the qubit indices involving TOFFOLI gate (and any multiplied gates). >>> U_list, overall_inds = _mult_sublists(tensor_list, overall_inds, U, U_inds) >>> np.testing.assert_allclose(U_list[0]) == z_gate()) >>> toffoli_xy = toffoli() * tensor(x_gate(), y_gate(), identity(2)) >>> np.testing.assert_allclose(U_list[1]), toffoli_xy) >>> overall_inds = [[2], [0, 1, 3]] """ tensor_sublist = [] inds_sublist = [] tensor_list_revised = [] overall_inds_revised = [] for sub_inds, sub_U in zip(overall_inds, tensor_list): if len(set(sub_inds).intersection(inds)) > 0: tensor_sublist.append(sub_U) inds_sublist.append(sub_inds) else: overall_inds_revised.append(sub_inds) tensor_list_revised.append(sub_U) inds_sublist = _flatten(inds_sublist) U_sublist = tensor(tensor_sublist) revised_inds = list(set(inds_sublist).union(set(inds))) N = len(revised_inds) sorted_positions = sorted(range(N), key=lambda key: revised_inds[key]) ind_map = {ind: pos for ind, pos in zip(revised_inds, sorted_positions)} U_sublist = expand_operator(U_sublist, N, [ind_map[ind] for ind in inds_sublist]) U = expand_operator(U, N, [ind_map[ind] for ind in inds]) U_sublist = U * U_sublist inds_sublist = revised_inds overall_inds_revised.append(inds_sublist) tensor_list_revised.append(U_sublist) return tensor_list_revised, overall_inds_revised def _expand_overall(tensor_list, overall_inds): """ Tensor unitaries in tensor list and then use expand_operator to rearrange them appropriately according to the indices in overall_inds. """ U_overall = tensor(tensor_list) overall_inds = _flatten(overall_inds) U_overall = expand_operator(U_overall, len(overall_inds), overall_inds) overall_inds = sorted(overall_inds) return U_overall, overall_inds def _gate_sequence_product(U_list, ind_list): """ Calculate the overall unitary matrix for a given list of unitary operations that are still of original dimension. Parameters ---------- U_list : list of Qobj List of gates(unitaries) implementing the quantum circuit. ind_list : list of list of int List of qubit indices corresponding to each gate in tensor_list. Returns ------- U_overall : qobj Unitary matrix corresponding to U_list. overall_inds : list of int List of qubit indices on which U_overall applies. Examples -------- First, we get some imports out of the way, >>> from qutip.qip.operations.gates import _gate_sequence_product >>> from qutip.qip.operations.gates import x_gate, y_gate, toffoli, z_gate Suppose we have a circuit with gates X, Y, Z, TOFFOLI applied on qubit indices 0, 1, 2 and [0, 1, 3] respectively. >>> tensor_lst = [x_gate(), y_gate(), z_gate(), toffoli()] >>> overall_inds = [[0], [1], [2], [0, 1, 3]] Then, we can use _gate_sequence_product to produce a single unitary obtained by multiplying unitaries in the list using heuristic methods to reduce the size of matrices being multiplied. >>> U_list, overall_inds = _gate_sequence_product(tensor_lst, overall_inds) """ num_qubits = len(set(chain(*ind_list))) sorted_inds = sorted(set(_flatten(ind_list))) ind_list = [[sorted_inds.index(ind) for ind in inds] for inds in ind_list] U_overall = 1 overall_inds = [] for i, (U, inds) in enumerate(zip(U_list, ind_list)): # when the tensor_list covers the full dimension of the circuit, we # expand the tensor_list to a unitary and call _gate_sequence_product # recursively on the rest of the U_list. if len(overall_inds) == 1 and len(overall_inds[0]) == num_qubits: U_overall, overall_inds = _expand_overall(tensor_list, overall_inds) U_left, rem_inds = _gate_sequence_product(U_list[i:], ind_list[i:]) U_left = expand_operator(U_left, num_qubits, rem_inds) return U_left * U_overall, [sorted_inds[ind] for ind in overall_inds] # special case for first unitary in the list if U_overall == 1: U_overall = U_overall * U overall_inds = [ind_list[0]] tensor_list = [U_overall] continue # case where the next unitary interacts on some subset of qubits # with the unitaries already in tensor_list. elif len(set(_flatten(overall_inds)).intersection(set(inds))) > 0: tensor_list, overall_inds = _mult_sublists(tensor_list, overall_inds, U, inds) # case where the next unitary does not interact with any unitary in # tensor_list else: overall_inds.append(inds) tensor_list.append(U) U_overall, overall_inds = _expand_overall(tensor_list, overall_inds) return U_overall, [sorted_inds[ind] for ind in overall_inds] def _gate_sequence_product_with_expansion(U_list, left_to_right=True): """ Calculate the overall unitary matrix for a given list of unitary operations. Parameters ---------- U_list : list List of gates(unitaries) implementing the quantum circuit. left_to_right : Boolean Check if multiplication is to be done from left to right. Returns ------- U_overall : qobj Unitary matrix corresponding to U_list. """ U_overall = 1 for U in U_list: if left_to_right: U_overall = U * U_overall else: U_overall = U_overall * U return U_overall
[docs]def gate_sequence_product(U_list, left_to_right=True, inds_list=None, expand=False): """ Calculate the overall unitary matrix for a given list of unitary operations. Parameters ---------- U_list: list List of gates implementing the quantum circuit. left_to_right: Boolean, optional Check if multiplication is to be done from left to right. inds_list: list of list of int, optional If expand=True, list of qubit indices corresponding to U_list to which each unitary is applied. expand: Boolean, optional Check if the list of unitaries need to be expanded to full dimension. Returns ------- U_overall : qobj Unitary matrix corresponding to U_list. overall_inds : list of int, optional List of qubit indices on which U_overall applies. """ if expand: return _gate_sequence_product(U_list, inds_list) else: return _gate_sequence_product_with_expansion(U_list, left_to_right)
def _powers(op, N): """ Generator that yields powers of an operator `op`, through to `N`. """ acc = qeye(op.dims[0]) yield acc for _ in range(N - 1): acc *= op yield acc def qubit_clifford_group(N=None, target=0): """ Generates the Clifford group on a single qubit, using the presentation of the group given by Ross and Selinger (https://www.mathstat.dal.ca/~selinger/newsynth/). Parameters ----------- N : int or None Number of qubits on which each operator is to be defined (default: 1). target : int Index of the target qubit on which the single-qubit Clifford operators are to act. Yields ------ op : Qobj Clifford operators, represented as Qobj instances. """ # The Ross-Selinger presentation of the single-qubit Clifford # group expresses each element in the form C_{ijk} = E^i X^j S^k # for gates E, X and S, and for i in range(3), j in range(2) and # k in range(4). # # We start by defining these gates. E is defined in terms of H, # \omega and S, so we define \omega and H first. w = np.exp(1j * 2 * np.pi / 8) H = snot() X = sigmax() S = phasegate(np.pi / 2) E = H * (S ** 3) * w ** 3 for op in map(partial(reduce, mul), product(_powers(E, 3), _powers(X, 2), _powers(S, 4))): # partial(reduce, mul) returns a function that takes products # of its argument, by analogy to sum. Note that by analogy, # sum can be written as partial(reduce, add). # product(...) yields the Cartesian product of its arguments. # Here, each element is a tuple (E**i, X**j, S**k) such that # partial(reduce, mul) acting on the tuple yields E**i * X**j * S**k. # Finally, we optionally expand the gate. if N is not None: yield gate_expand_1toN(op, N, target) else: yield op # # Gate Expand #
[docs]def gate_expand_1toN(U, N, target): """ Create a Qobj representing a one-qubit gate that act on a system with N qubits. Parameters ---------- U : Qobj The one-qubit gate N : integer The number of qubits in the target space. target : integer The index of the target qubit. Returns ------- gate : qobj Quantum object representation of N-qubit gate. """ if N < 1: raise ValueError("integer N must be larger or equal to 1") if target >= N: raise ValueError("target must be integer < integer N") return tensor([identity(2)] * (target) + [U] + [identity(2)] * (N - target - 1))
[docs]def gate_expand_2toN(U, N, control=None, target=None, targets=None): """ Create a Qobj representing a two-qubit gate that act on a system with N qubits. Parameters ---------- U : Qobj The two-qubit gate N : integer The number of qubits in the target space. control : integer The index of the control qubit. target : integer The index of the target qubit. targets : list List of target qubits. Returns ------- gate : qobj Quantum object representation of N-qubit gate. """ if targets is not None: control, target = targets if control is None or target is None: raise ValueError("Specify value of control and target") if N < 2: raise ValueError("integer N must be larger or equal to 2") if control >= N or target >= N: raise ValueError("control and not target must be integer < integer N") if control == target: raise ValueError("target and not control cannot be equal") p = list(range(N)) if target == 0 and control == 1: p[control], p[target] = p[target], p[control] elif target == 0: p[1], p[target] = p[target], p[1] p[1], p[control] = p[control], p[1] else: p[1], p[target] = p[target], p[1] p[0], p[control] = p[control], p[0] return tensor([U] + [identity(2)] * (N - 2)).permute(p)
[docs]def gate_expand_3toN(U, N, controls=[0, 1], target=2): """ Create a Qobj representing a three-qubit gate that act on a system with N qubits. Parameters ---------- U : Qobj The three-qubit gate N : integer The number of qubits in the target space. controls : list The list of the control qubits. target : integer The index of the target qubit. Returns ------- gate : qobj Quantum object representation of N-qubit gate. """ if N < 3: raise ValueError("integer N must be larger or equal to 3") if controls[0] >= N or controls[1] >= N or target >= N: raise ValueError("control and not target is None." " Must be integer < integer N") if (controls[0] == target or controls[1] == target or controls[0] == controls[1]): raise ValueError("controls[0], controls[1], and target" " cannot be equal") p = list(range(N)) p1 = list(range(N)) p2 = list(range(N)) if controls[0] <= 2 and controls[1] <= 2 and target <= 2: p[controls[0]] = 0 p[controls[1]] = 1 p[target] = 2 # # N > 3 cases # elif controls[0] == 0 and controls[1] == 1: p[2], p[target] = p[target], p[2] elif controls[0] == 0 and target == 2: p[1], p[controls[1]] = p[controls[1]], p[1] elif controls[1] == 1 and target == 2: p[0], p[controls[0]] = p[controls[0]], p[0] elif controls[0] == 1 and controls[1] == 0: p[controls[1]], p[controls[0]] = p[controls[0]], p[controls[1]] p2[2], p2[target] = p2[target], p2[2] p = [p2[p[k]] for k in range(N)] elif controls[0] == 2 and target == 0: p[target], p[controls[0]] = p[controls[0]], p[target] p1[1], p1[controls[1]] = p1[controls[1]], p1[1] p = [p1[p[k]] for k in range(N)] elif controls[1] == 2 and target == 1: p[target], p[controls[1]] = p[controls[1]], p[target] p1[0], p1[controls[0]] = p1[controls[0]], p1[0] p = [p1[p[k]] for k in range(N)] elif controls[0] == 1 and controls[1] == 2: # controls[0] -> controls[1] -> target -> outside p[0], p[1] = p[1], p[0] p[0], p[2] = p[2], p[0] p[0], p[target] = p[target], p[0] elif controls[0] == 2 and target == 1: # controls[0] -> target -> controls[1] -> outside p[0], p[2] = p[2], p[0] p[0], p[1] = p[1], p[0] p[0], p[controls[1]] = p[controls[1]], p[0] elif controls[1] == 0 and controls[0] == 2: # controls[1] -> controls[0] -> target -> outside p[1], p[0] = p[0], p[1] p[1], p[2] = p[2], p[1] p[1], p[target] = p[target], p[1] elif controls[1] == 2 and target == 0: # controls[1] -> target -> controls[0] -> outside p[1], p[2] = p[2], p[1] p[1], p[0] = p[0], p[1] p[1], p[controls[0]] = p[controls[0]], p[1] elif target == 1 and controls[1] == 0: # target -> controls[1] -> controls[0] -> outside p[2], p[1] = p[1], p[2] p[2], p[0] = p[0], p[2] p[2], p[controls[0]] = p[controls[0]], p[2] elif target == 0 and controls[0] == 1: # target -> controls[0] -> controls[1] -> outside p[2], p[0] = p[0], p[2] p[2], p[1] = p[1], p[2] p[2], p[controls[1]] = p[controls[1]], p[2] elif controls[0] == 0 and controls[1] == 2: # controls[0] -> self, controls[1] -> target -> outside p[1], p[2] = p[2], p[1] p[1], p[target] = p[target], p[1] elif controls[1] == 1 and controls[0] == 2: # controls[1] -> self, controls[0] -> target -> outside p[0], p[2] = p[2], p[0] p[0], p[target] = p[target], p[0] elif target == 2 and controls[0] == 1: # target -> self, controls[0] -> controls[1] -> outside p[0], p[1] = p[1], p[0] p[0], p[controls[1]] = p[controls[1]], p[0] # # N > 4 cases # elif controls[0] == 1 and controls[1] > 2 and target > 2: # controls[0] -> controls[1] -> outside, target -> outside p[0], p[1] = p[1], p[0] p[0], p[controls[1]] = p[controls[1]], p[0] p[2], p[target] = p[target], p[2] elif controls[0] == 2 and controls[1] > 2 and target > 2: # controls[0] -> target -> outside, controls[1] -> outside p[0], p[2] = p[2], p[0] p[0], p[target] = p[target], p[0] p[1], p[controls[1]] = p[controls[1]], p[1] elif controls[1] == 2 and controls[0] > 2 and target > 2: # controls[1] -> target -> outside, controls[0] -> outside p[1], p[2] = p[2], p[1] p[1], p[target] = p[target], p[1] p[0], p[controls[0]] = p[controls[0]], p[0] else: p[0], p[controls[0]] = p[controls[0]], p[0] p1[1], p1[controls[1]] = p1[controls[1]], p1[1] p2[2], p2[target] = p2[target], p2[2] p = [p[p1[p2[k]]] for k in range(N)] return tensor([U] + [identity(2)] * (N - 3)).permute(p)
def _check_qubits_oper(oper, dims=None, targets=None): """ Check if the given operator is valid. Parameters ---------- oper : :class:`qutip.Qobj` The quantum object to be checked. dims : list, optional A list of integer for the dimension of each composite system. e.g ``[2, 2, 2, 2, 2]`` for 5 qubits system. If None, qubits system will be the default. targets : int or list of int, optional The indices of qubits that are acted on. """ # if operator matches N if not isinstance(oper, Qobj) or oper.dims[0] != oper.dims[1]: raise ValueError( "The operator is not an " "Qobj with the same input and output dimensions.") # if operator dims matches the target dims if dims is not None and targets is not None: targ_dims = [dims[t] for t in targets] if oper.dims[0] != targ_dims: raise ValueError( "The operator dims {} do not match " "the target dims {}.".format( oper.dims[0], targ_dims)) def _targets_to_list(targets, oper=None, N=None): """ transform targets to a list and check validity. Parameters ---------- targets : int or list of int The indices of qubits that are acted on. oper : :class:`qutip.Qobj`, optional An operator acts on qubits, the type of the :class:`qutip.Qobj` has to be an operator and the dimension matches the tensored qubit Hilbert space e.g. dims = ``[[2, 2, 2], [2, 2, 2]]`` N : int, optional The number of qubits in the system. """ # if targets is a list of integer if targets is None: targets = list(range(len(oper.dims[0]))) if not isinstance(targets, Iterable): targets = [targets] if not all([isinstance(t, numbers.Integral) for t in targets]): raise TypeError( "targets should be " "an integer or a list of integer") # if targets has correct length if oper is not None: req_num = len(oper.dims[0]) if len(targets) != req_num: raise ValueError( "The given operator needs {} " "target qutbis, " "but {} given.".format( req_num, len(targets))) # if targets is smaller than N if N is not None: if not all([t < N for t in targets]): raise ValueError("Targets must be smaller than N={}.".format(N)) return targets
[docs]def expand_operator(oper, N, targets, dims=None, cyclic_permutation=False): """ Expand a qubits operator to one that acts on a N-qubit system. Parameters ---------- oper : :class:`qutip.Qobj` An operator acts on qubits, the type of the :class:`qutip.Qobj` has to be an operator and the dimension matches the tensored qubit Hilbert space e.g. dims = ``[[2, 2, 2], [2, 2, 2]]`` N : int The number of qubits in the system. targets : int or list of int The indices of qubits that are acted on. dims : list, optional A list of integer for the dimension of each composite system. E.g ``[2, 2, 2, 2, 2]`` for 5 qubits system. If None, qubits system will be the default option. cyclic_permutation : boolean, optional Expand for all cyclic permutation of the targets. E.g. if ``N=3`` and `oper` is a 2-qubit operator, the result will be a list of three operators, each acting on qubits 0 and 1, 1 and 2, 2 and 0. Returns ------- expanded_oper : :class:`qutip.Qobj` The expanded qubits operator acting on a system with N qubits. Notes ----- This is equivalent to gate_expand_1toN, gate_expand_2toN, gate_expand_3toN in ``qutip.qip.gate.py``, but works for any dimension. """ if dims is None: dims = [2] * N targets = _targets_to_list(targets, oper=oper, N=N) _check_qubits_oper(oper, dims=dims, targets=targets) # Call expand_operator for all cyclic permutation of the targets. if cyclic_permutation: oper_list = [] for i in range(N): new_targets = np.mod(np.array(targets)+i, N) oper_list.append( expand_operator(oper, N=N, targets=new_targets, dims=dims)) return oper_list # Generate the correct order for qubits permutation, # eg. if N = 5, targets = [3,0], the order is [1,2,3,0,4]. # If the operator is cnot, # this order means that the 3rd qubit controls the 0th qubit. new_order = [0] * N for i, t in enumerate(targets): new_order[t] = i # allocate the rest qutbits (not targets) to the empty # position in new_order rest_pos = [q for q in list(range(N)) if q not in targets] rest_qubits = list(range(len(targets), N)) for i, ind in enumerate(rest_pos): new_order[ind] = rest_qubits[i] id_list = [identity(dims[i]) for i in rest_pos] return tensor([oper] + id_list).permute(new_order)