Source code for qutip.operators

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
"""
This module contains functions for generating Qobj representation of a variety
of commonly occuring quantum operators.
"""

__all__ = ['jmat', 'spin_Jx', 'spin_Jy', 'spin_Jz', 'spin_Jm', 'spin_Jp',
           'spin_J_set', 'sigmap', 'sigmam', 'sigmax', 'sigmay', 'sigmaz',
           'destroy', 'create', 'qeye', 'identity', 'position', 'momentum',
           'num', 'squeeze', 'squeezing', 'displace', 'commutator',
           'qutrit_ops', 'qdiags', 'phase', 'qzero', 'enr_destroy',
           'enr_identity', 'charge', 'tunneling']

import numbers
import numpy as np
import scipy.sparse as sp
from qutip.qobj import Qobj
from qutip.fastsparse import fast_csr_matrix, fast_identity
from qutip.dimensions import flatten

#
# Spin operators
#
[docs]def jmat(j, *args): """Higher-order spin operators: Parameters ---------- j : float Spin of operator args : str Which operator to return 'x','y','z','+','-'. If no args given, then output is ['x','y','z'] Returns ------- jmat : qobj / ndarray ``qobj`` for requested spin operator(s). Examples -------- >>> jmat(1) # doctest: +SKIP [ Quantum object: dims = [[3], [3]], \ shape = [3, 3], type = oper, isHerm = True Qobj data = [[ 0. 0.70710678 0. ] [ 0.70710678 0. 0.70710678] [ 0. 0.70710678 0. ]] Quantum object: dims = [[3], [3]], \ shape = [3, 3], type = oper, isHerm = True Qobj data = [[ 0.+0.j 0.-0.70710678j 0.+0.j ] [ 0.+0.70710678j 0.+0.j 0.-0.70710678j] [ 0.+0.j 0.+0.70710678j 0.+0.j ]] Quantum object: dims = [[3], [3]], \ shape = [3, 3], type = oper, isHerm = True Qobj data = [[ 1. 0. 0.] [ 0. 0. 0.] [ 0. 0. -1.]]] Notes ----- If no 'args' input, then returns array of ['x','y','z'] operators. """ if (np.fix(2 * j) != 2 * j) or (j < 0): raise TypeError('j must be a non-negative integer or half-integer') if not args: return jmat(j, 'x'), jmat(j, 'y'), jmat(j, 'z') if args[0] == '+': A = _jplus(j) elif args[0] == '-': A = _jplus(j).getH() elif args[0] == 'x': A = 0.5 * (_jplus(j) + _jplus(j).getH()) elif args[0] == 'y': A = -0.5 * 1j * (_jplus(j) - _jplus(j).getH()) elif args[0] == 'z': A = _jz(j) else: raise TypeError('Invalid type') return Qobj(A)
def _jplus(j): """ Internal functions for generating the data representing the J-plus operator. """ m = np.arange(j, -j - 1, -1, dtype=complex) data = (np.sqrt(j * (j + 1.0) - (m + 1.0) * m))[1:] N = m.shape[0] ind = np.arange(1, N, dtype=np.int32) ptr = np.array(list(range(N-1))+[N-1]*2, dtype=np.int32) ptr[-1] = N-1 return fast_csr_matrix((data,ind,ptr), shape=(N,N)) def _jz(j): """ Internal functions for generating the data representing the J-z operator. """ N = int(2*j+1) data = np.array([j-k for k in range(N) if (j-k)!=0], dtype=complex) # Even shaped matrix if (N % 2 == 0): ind = np.arange(N, dtype=np.int32) ptr = np.arange(N+1,dtype=np.int32) ptr[-1] = N # Odd shaped matrix else: j = int(j) ind = np.array(list(range(j))+list(range(j+1,N)), dtype=np.int32) ptr = np.array(list(range(j+1))+list(range(j,N)), dtype=np.int32) ptr[-1] = N-1 return fast_csr_matrix((data,ind,ptr), shape=(N,N)) # # Spin j operators: #
[docs]def spin_Jx(j): """Spin-j x operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, 'x')
[docs]def spin_Jy(j): """Spin-j y operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, 'y')
[docs]def spin_Jz(j): """Spin-j z operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, 'z')
[docs]def spin_Jm(j): """Spin-j annihilation operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, '-')
[docs]def spin_Jp(j): """Spin-j creation operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, '+')
def spin_J_set(j): """Set of spin-j operators (x, y, z) Parameters ---------- j : float Spin of operators Returns ------- list : list of Qobj list of ``qobj`` representating of the spin operator. """ return jmat(j) # # Pauli spin 1/2 operators: #
[docs]def sigmap(): """Creation operator for Pauli spins. Examples -------- >>> sigmap() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0. 1.] [ 0. 0.]] """ return jmat(1 / 2., '+')
[docs]def sigmam(): """Annihilation operator for Pauli spins. Examples -------- >>> sigmam() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0. 0.] [ 1. 0.]] """ return jmat(1 / 2., '-')
[docs]def sigmax(): """Pauli spin 1/2 sigma-x operator Examples -------- >>> sigmax() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0. 1.] [ 1. 0.]] """ return 2 * jmat(1 / 2, 'x')
[docs]def sigmay(): """Pauli spin 1/2 sigma-y operator. Examples -------- >>> sigmay() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = True Qobj data = [[ 0.+0.j 0.-1.j] [ 0.+1.j 0.+0.j]] """ return 2 * jmat(1 / 2, 'y')
[docs]def sigmaz(): """Pauli spin 1/2 sigma-z operator. Examples -------- >>> sigmaz() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = True Qobj data = [[ 1. 0.] [ 0. -1.]] """ return 2 * jmat(1 / 2, 'z')
# # DESTROY returns annihilation operator for N dimensional Hilbert space # out = destroy(N), N is integer value & N>0 #
[docs]def destroy(N, offset=0): '''Destruction (lowering) operator. Parameters ---------- N : int Dimension of Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : qobj Qobj for lowering operator. Examples -------- >>> destroy(4) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.00000000+0.j 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 1.73205081+0.j] [ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]] ''' if not isinstance(N, (int, np.integer)): # raise error if N not integer raise ValueError("Hilbert space dimension must be integer value") data = np.sqrt(np.arange(offset+1, N+offset, dtype=complex)) ind = np.arange(1,N, dtype=np.int32) ptr = np.arange(N+1, dtype=np.int32) ptr[-1] = N-1 return Qobj(fast_csr_matrix((data,ind,ptr),shape=(N,N)), isherm=False)
# # create returns creation operator for N dimensional Hilbert space # out = create(N), N is integer value & N>0 #
[docs]def create(N, offset=0): '''Creation (raising) operator. Parameters ---------- N : int Dimension of Hilbert space. Returns ------- oper : qobj Qobj for raising operator. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Examples -------- >>> create(4) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j] [ 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j 1.73205081+0.j 0.00000000+0.j]] ''' if not isinstance(N, (int, np.integer)): # raise error if N not integer raise ValueError("Hilbert space dimension must be integer value") qo = destroy(N, offset=offset) # create operator using destroy function return qo.dag()
def _implicit_tensor_dimensions(dimensions): """ Total flattened size and operator dimensions for operator creation routines that automatically perform tensor products. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) First dimension of an operator which can create an implicit tensor product. If the type is `int`, it is promoted first to `[dimensions]`. From there, it should be one of the two-elements `dims` parameter of a `qutip.Qobj` representing an `oper` or `super`, with possible tensor products. Returns ------- size : int Dimension of backing matrix required to represent operator. dimensions : list Dimension list in the form required by ``Qobj`` creation. """ if not isinstance(dimensions, list): dimensions = [dimensions] flat = flatten(dimensions) if not all(isinstance(x, numbers.Integral) and x >= 0 for x in flat): raise ValueError("All dimensions must be integers >= 0") return np.prod(flat), [dimensions, dimensions]
[docs]def qzero(dimensions): """ Zero operator. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the ``dims`` property of the new Qobj are set to this list. This can produce either `oper` or `super` depending on the passed `dimensions`. Returns ------- qzero : qobj Zero operator Qobj. """ size, dimensions = _implicit_tensor_dimensions(dimensions) # A sparse matrix with no data is equal to a zero matrix. return Qobj(fast_csr_matrix(shape=(size, size), dtype=complex), dims=dimensions, isherm=True)
# # QEYE returns identity operator for a Hilbert space with dimensions dims. # a = qeye(N), N is integer or list of integers & all elements >= 0 #
[docs]def qeye(dimensions): """ Identity operator. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the ``dims`` property of the new Qobj are set to this list. This can produce either `oper` or `super` depending on the passed `dimensions`. Returns ------- oper : qobj Identity operator Qobj. Examples -------- >>> qeye(3) # doctest: +SKIP Quantum object: dims = [[3], [3]], shape = (3, 3), type = oper, \ isherm = True Qobj data = [[ 1. 0. 0.] [ 0. 1. 0.] [ 0. 0. 1.]] >>> qeye([2,2]) # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, \ isherm = True Qobj data = [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] """ size, dimensions = _implicit_tensor_dimensions(dimensions) return Qobj(fast_identity(size), dims=dimensions, isherm=True, isunitary=True)
[docs]def identity(dims): """Identity operator. Alternative name to :func:`qeye`. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the ``dims`` property of the new Qobj are set to this list. This can produce either `oper` or `super` depending on the passed `dimensions`. Returns ------- oper : qobj Identity operator Qobj. """ return qeye(dims)
[docs]def position(N, offset=0): """ Position operator x=1/sqrt(2)*(a+a.dag()) Parameters ---------- N : int Number of Fock states in Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : qobj Position operator as Qobj. """ a = destroy(N, offset=offset) return 1.0 / np.sqrt(2.0) * (a + a.dag())
[docs]def momentum(N, offset=0): """ Momentum operator p=-1j/sqrt(2)*(a-a.dag()) Parameters ---------- N : int Number of Fock states in Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : qobj Momentum operator as Qobj. """ a = destroy(N, offset=offset) return -1j / np.sqrt(2.0) * (a - a.dag())
[docs]def num(N, offset=0): """Quantum object for number operator. Parameters ---------- N : int The dimension of the Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper: qobj Qobj for number operator. Examples -------- >>> num(4) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[0 0 0 0] [0 1 0 0] [0 0 2 0] [0 0 0 3]] """ if offset == 0: data = np.arange(1,N, dtype=complex) ind = np.arange(1,N, dtype=np.int32) ptr = np.array([0]+list(range(0,N)), dtype=np.int32) ptr[-1] = N-1 else: data = np.arange(offset, offset + N, dtype=complex) ind = np.arange(N, dtype=np.int32) ptr = np.arange(N+1,dtype=np.int32) ptr[-1] = N return Qobj(fast_csr_matrix((data,ind,ptr), shape=(N,N)), isherm=True)
[docs]def squeeze(N, z, offset=0): """Single-mode Squeezing operator. Parameters ---------- N : int Dimension of hilbert space. z : float/complex Squeezing parameter. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : :class:`qutip.qobj.Qobj` Squeezing operator. Examples -------- >>> squeeze(4, 0.25) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.98441565+0.j 0.00000000+0.j 0.17585742+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.95349007+0.j 0.00000000+0.j 0.30142443+0.j] [-0.17585742+0.j 0.00000000+0.j 0.98441565+0.j 0.00000000+0.j] [ 0.00000000+0.j -0.30142443+0.j 0.00000000+0.j 0.95349007+0.j]] """ a = destroy(N, offset=offset) op = (1 / 2.0) * np.conj(z) * (a ** 2) - (1 / 2.0) * z * (a.dag()) ** 2 return op.expm()
[docs]def squeezing(a1, a2, z): """Generalized squeezing operator. .. math:: S(z) = \\exp\\left(\\frac{1}{2}\\left(z^*a_1a_2 - za_1^\\dagger a_2^\\dagger\\right)\\right) Parameters ---------- a1 : :class:`qutip.qobj.Qobj` Operator 1. a2 : :class:`qutip.qobj.Qobj` Operator 2. z : float/complex Squeezing parameter. Returns ------- oper : :class:`qutip.qobj.Qobj` Squeezing operator. """ b = 0.5 * (np.conj(z) * (a1 * a2) - z * (a1.dag() * a2.dag())) return b.expm()
[docs]def displace(N, alpha, offset=0): """Single-mode displacement operator. Parameters ---------- N : int Dimension of Hilbert space. alpha : float/complex Displacement amplitude. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : qobj Displacement operator. Examples --------- >>> displace(4,0.25) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.96923323+0.j -0.24230859+0.j 0.04282883+0.j -0.00626025+0.j] [ 0.24230859+0.j 0.90866411+0.j -0.33183303+0.j 0.07418172+0.j] [ 0.04282883+0.j 0.33183303+0.j 0.84809499+0.j -0.41083747+0.j] [ 0.00626025+0.j 0.07418172+0.j 0.41083747+0.j 0.90866411+0.j]] """ a = destroy(N, offset=offset) D = (alpha * a.dag() - np.conj(alpha) * a).expm() return D
[docs]def commutator(A, B, kind="normal"): """ Return the commutator of kind `kind` (normal, anti) of the two operators A and B. """ if kind == 'normal': return A * B - B * A elif kind == 'anti': return A * B + B * A else: raise TypeError("Unknown commutator kind '%s'" % kind)
[docs]def qutrit_ops(): """ Operators for a three level system (qutrit). Returns ------- opers: array `array` of qutrit operators. """ from qutip.states import qutrit_basis out = np.empty((6,), dtype=object) one, two, three = qutrit_basis() out[0] = one * one.dag() out[1] = two * two.dag() out[2] = three * three.dag() out[3] = one * two.dag() out[4] = two * three.dag() out[5] = three * one.dag() return out
[docs]def qdiags(diagonals, offsets, dims=None, shape=None): """ Constructs an operator from an array of diagonals. Parameters ---------- diagonals : sequence of array_like Array of elements to place along the selected diagonals. offsets : sequence of ints Sequence for diagonals to be set: - k=0 main diagonal - k>0 kth upper diagonal - k<0 kth lower diagonal dims : list, optional Dimensions for operator shape : list, tuple, optional Shape of operator. If omitted, a square operator large enough to contain the diagonals is generated. See Also -------- scipy.sparse.diags : for usage information. Notes ----- This function requires SciPy 0.11+. Examples -------- >>> qdiags(sqrt(range(1, 4)), 1) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isherm = False Qobj data = [[ 0. 1. 0. 0. ] [ 0. 0. 1.41421356 0. ] [ 0. 0. 0. 1.73205081] [ 0. 0. 0. 0. ]] """ data = sp.diags(diagonals, offsets, shape, format='csr', dtype=complex) return Qobj(data, dims, shape)
[docs]def phase(N, phi0=0): """ Single-mode Pegg-Barnett phase operator. Parameters ---------- N : int Number of basis states in Hilbert space. phi0 : float Reference phase. Returns ------- oper : qobj Phase operator with respect to reference phase. Notes ----- The Pegg-Barnett phase operator is Hermitian on a truncated Hilbert space. """ phim = phi0 + (2.0 * np.pi * np.arange(N)) / N # discrete phase angles n = np.arange(N).reshape((N, 1)) states = np.array([np.sqrt(kk) / np.sqrt(N) * np.exp(1.0j * n * kk) for kk in phim]) ops = np.array([np.outer(st, st.conj()) for st in states]) return Qobj(np.sum(ops, axis=0))
[docs]def enr_destroy(dims, excitations): """ Generate annilation operators for modes in a excitation-number-restricted state space. For example, consider a system consisting of 4 modes, each with 5 states. The total hilbert space size is 5**4 = 625. If we are only interested in states that contain up to 2 excitations, we only need to include states such as (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 2) (0, 0, 1, 0) (0, 0, 1, 1) (0, 0, 2, 0) ... This function creates annihilation operators for the 4 modes that act within this state space: a1, a2, a3, a4 = enr_destroy([5, 5, 5, 5], excitations=2) From this point onwards, the annihiltion operators a1, ..., a4 can be used to setup a Hamiltonian, collapse operators and expectation-value operators, etc., following the usual pattern. Parameters ---------- dims : list A list of the dimensions of each subsystem of a composite quantum system. excitations : integer The maximum number of excitations that are to be included in the state space. Returns ------- a_ops : list of qobj A list of annihilation operators for each mode in the composite quantum system described by dims. """ from qutip.states import enr_state_dictionaries nstates, state2idx, idx2state = enr_state_dictionaries(dims, excitations) a_ops = [sp.lil_matrix((nstates, nstates), dtype=np.complex128) for _ in range(len(dims))] for n1, state1 in idx2state.items(): for n2, state2 in idx2state.items(): for idx, a in enumerate(a_ops): s1 = [s for idx2, s in enumerate(state1) if idx != idx2] s2 = [s for idx2, s in enumerate(state2) if idx != idx2] if (state1[idx] == state2[idx] - 1) and (s1 == s2): a_ops[idx][n1, n2] = np.sqrt(state2[idx]) return [Qobj(a, dims=[dims, dims]) for a in a_ops]
[docs]def enr_identity(dims, excitations): """ Generate the identity operator for the excitation-number restricted state space defined by the `dims` and `exciations` arguments. See the docstring for enr_fock for a more detailed description of these arguments. Parameters ---------- dims : list A list of the dimensions of each subsystem of a composite quantum system. excitations : integer The maximum number of excitations that are to be included in the state space. state : list of integers The state in the number basis representation. Returns ------- op : Qobj A Qobj instance that represent the identity operator in the exication-number-restricted state space defined by `dims` and `exciations`. """ from qutip.states import enr_state_dictionaries nstates, _, _ = enr_state_dictionaries(dims, excitations) data = sp.eye(nstates, nstates, dtype=np.complex128) return Qobj(data, dims=[dims, dims])
[docs]def charge(Nmax, Nmin=None, frac = 1): """ Generate the diagonal charge operator over charge states from Nmin to Nmax. Parameters ---------- Nmax : int Maximum charge state to consider. Nmin : int (default = -Nmax) Lowest charge state to consider. frac : float (default = 1) Specify fractional charge if needed. Returns ------- C : Qobj Charge operator over [Nmin,Nmax]. Notes ----- .. versionadded:: 3.2 """ if Nmin is None: Nmin = -Nmax diag = np.arange(Nmin, Nmax+1, dtype=float) if frac != 1: diag *= frac C = sp.diags(diag, 0, format='csr', dtype=complex) return Qobj(C, isherm=True)
[docs]def tunneling(N, m=1): """ Tunneling operator with elements of the form :math:`\\sum |N><N+m| + |N+m><N|`. Parameters ---------- N : int Number of basis states in Hilbert space. m : int (default = 1) Number of excitations in tunneling event. Returns ------- T : Qobj Tunneling operator. Notes ----- .. versionadded:: 3.2 """ diags = [np.ones(N-m,dtype=int),np.ones(N-m,dtype=int)] T = sp.diags(diags,[m,-m],format='csr', dtype=complex) return Qobj(T, isherm=True)
# Break circular dependencies by a trailing import. # Note that we use a relative import here to deal with that # qutip.tensor is the *function* tensor, not the module. from qutip.tensor import tensor