Source code for qutip.matplotlib_utilities

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################

"""
This module contains utility functions that enhance Matplotlib
in one way or another.
"""

__all__ = ['wigner_cmap', 'MidpointNorm', 'complex_phase_cmap']

import numpy as np

try:
    import matplotlib as mpl
    from matplotlib import cm
    from matplotlib.colors import (Normalize, ColorConverter)
except:
    class Normalize(object):
        def __init__(self, vmin=None, vmax=None, clip=False):
            pass


[docs]def wigner_cmap(W, levels=1024, shift=0, max_color='#09224F', mid_color='#FFFFFF', min_color='#530017', neg_color='#FF97D4', invert=False): """A custom colormap that emphasizes negative values by creating a nonlinear colormap. Parameters ---------- W : array Wigner function array, or any array. levels : int Number of color levels to create. shift : float Shifts the value at which Wigner elements are emphasized. This parameter should typically be negative and small (i.e -1e-5). max_color : str String for color corresponding to maximum value of data. Accepts any string format compatible with the Matplotlib.colors.ColorConverter. mid_color : str Color corresponding to zero values. Accepts any string format compatible with the Matplotlib.colors.ColorConverter. min_color : str Color corresponding to minimum data values. Accepts any string format compatible with the Matplotlib.colors.ColorConverter. neg_color : str Color that starts highlighting negative values. Accepts any string format compatible with the Matplotlib.colors.ColorConverter. invert : bool Invert the color scheme for negative values so that smaller negative values have darker color. Returns ------- Returns a Matplotlib colormap instance for use in plotting. Notes ----- The 'shift' parameter allows you to vary where the colormap begins to highlight negative colors. This is beneficial in cases where there are small negative Wigner elements due to numerical round-off and/or truncation. """ cc = ColorConverter() max_color = np.array(cc.to_rgba(max_color), dtype=float) mid_color = np.array(cc.to_rgba(mid_color), dtype=float) if invert: min_color = np.array(cc.to_rgba(neg_color), dtype=float) neg_color = np.array(cc.to_rgba(min_color), dtype=float) else: min_color = np.array(cc.to_rgba(min_color), dtype=float) neg_color = np.array(cc.to_rgba(neg_color), dtype=float) # get min and max values from Wigner function bounds = [W.min(), W.max()] # create empty array for RGBA colors adjust_RGBA = np.hstack((np.zeros((levels, 3)), np.ones((levels, 1)))) zero_pos = int(np.round(levels * np.abs(shift - bounds[0]) / (bounds[1] - bounds[0]))) num_pos = levels - zero_pos num_neg = zero_pos - 1 # set zero values to mid_color adjust_RGBA[zero_pos] = mid_color # interpolate colors for k in range(0, levels): if k < zero_pos: interp = k / (num_neg + 1.0) adjust_RGBA[k][0:3] = (1.0 - interp) * \ min_color[0:3] + interp * neg_color[0:3] elif k > zero_pos: interp = (k - zero_pos) / (num_pos + 1.0) adjust_RGBA[k][0:3] = (1.0 - interp) * \ mid_color[0:3] + interp * max_color[0:3] # create colormap wig_cmap = mpl.colors.LinearSegmentedColormap.from_list('wigner_cmap', adjust_RGBA, N=levels) return wig_cmap
[docs]def complex_phase_cmap(): """ Create a cyclic colormap for representing the phase of complex variables Returns ------- cmap : A matplotlib linear segmented colormap. """ cdict = {'blue': ((0.00, 0.0, 0.0), (0.25, 0.0, 0.0), (0.50, 1.0, 1.0), (0.75, 1.0, 1.0), (1.00, 0.0, 0.0)), 'green': ((0.00, 0.0, 0.0), (0.25, 1.0, 1.0), (0.50, 0.0, 0.0), (0.75, 1.0, 1.0), (1.00, 0.0, 0.0)), 'red': ((0.00, 1.0, 1.0), (0.25, 0.5, 0.5), (0.50, 0.0, 0.0), (0.75, 0.0, 0.0), (1.00, 1.0, 1.0))} cmap = mpl.colors.LinearSegmentedColormap('phase_colormap', cdict, 256) return cmap
class MidpointNorm(Normalize): """Normalization for a colormap centered about a given midpoint. Parameters ---------- midpoint : float (optional, default=0) Midpoint about which colormap is centered. vmin: float (optional) Minimal value for colormap. Calculated from data by default. vmax: float (optional) Maximal value for colormap. Calculated from data by default. Returns ------- Returns a Matplotlib colormap normalization that can be used with any colormap. """ def __init__(self, midpoint=0, vmin=None, vmax=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y))