# This file is part of QuTiP: Quantum Toolbox in Python.
#
# Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
# of its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
"""
This module contains a collection functions for calculating continuous variable
quantities from fock-basis representation of the state of multi-mode fields.
"""
__all__ = ['correlation_matrix', 'covariance_matrix',
'correlation_matrix_field', 'correlation_matrix_quadrature',
'wigner_covariance_matrix', 'logarithmic_negativity']
from qutip.expect import expect
import numpy as np
[docs]def correlation_matrix(basis, rho=None):
r"""
Given a basis set of operators :math:`\{a\}_n`, calculate the correlation
matrix:
.. math::
C_{mn} = \langle a_m a_n \rangle
Parameters
----------
basis : list
List of operators that defines the basis for the correlation matrix.
rho : Qobj
Density matrix for which to calculate the correlation matrix. If
`rho` is `None`, then a matrix of correlation matrix operators is
returned instead of expectation values of those operators.
Returns
-------
corr_mat : ndarray
A 2-dimensional *array* of correlation values or operators.
"""
if rho is None:
# return array of operators
out = np.empty((len(basis), len(basis)), dtype=object)
for i, op2 in enumerate(basis):
out[i, :] = [op1 * op2 for op1 in basis]
return out
else:
# return array of expectation values
return np.array([[expect(op1 * op2, rho)
for op1 in basis] for op2 in basis])
[docs]def covariance_matrix(basis, rho, symmetrized=True):
r"""
Given a basis set of operators :math:`\{a\}_n`, calculate the covariance
matrix:
.. math::
V_{mn} = \frac{1}{2}\langle a_m a_n + a_n a_m \rangle -
\langle a_m \rangle \langle a_n\rangle
or, if of the optional argument `symmetrized=False`,
.. math::
V_{mn} = \langle a_m a_n\rangle -
\langle a_m \rangle \langle a_n\rangle
Parameters
----------
basis : list
List of operators that defines the basis for the covariance matrix.
rho : Qobj
Density matrix for which to calculate the covariance matrix.
symmetrized : bool {True, False}
Flag indicating whether the symmetrized (default) or non-symmetrized
correlation matrix is to be calculated.
Returns
-------
corr_mat : ndarray
A 2-dimensional array of covariance values.
"""
if symmetrized:
return np.array([[0.5 * expect(op1 * op2 + op2 * op1, rho) -
expect(op1, rho) * expect(op2, rho)
for op1 in basis] for op2 in basis])
else:
return np.array([[expect(op1 * op2, rho) -
expect(op1, rho) * expect(op2, rho)
for op1 in basis] for op2 in basis])
[docs]def correlation_matrix_field(a1, a2, rho=None):
"""
Calculates the correlation matrix for given field operators :math:`a_1` and
:math:`a_2`. If a density matrix is given the expectation values are
calculated, otherwise a matrix with operators is returned.
Parameters
----------
a1 : Qobj
Field operator for mode 1.
a2 : Qobj
Field operator for mode 2.
rho : Qobj
Density matrix for which to calculate the covariance matrix.
Returns
-------
cov_mat : ndarray
Array of complex numbers or Qobj's
A 2-dimensional *array* of covariance values, or, if rho=0, a matrix
of operators.
"""
basis = [a1, a1.dag(), a2, a2.dag()]
return correlation_matrix(basis, rho)
[docs]def correlation_matrix_quadrature(a1, a2, rho=None, g=np.sqrt(2)):
"""
Calculate the quadrature correlation matrix with given field operators
:math:`a_1` and :math:`a_2`. If a density matrix is given the expectation
values are calculated, otherwise a matrix with operators is returned.
Parameters
----------
a1 : Qobj
Field operator for mode 1.
a2 : Qobj
Field operator for mode 2.
rho : Qobj
Density matrix for which to calculate the covariance matrix.
g : float
Scaling factor for `a = 0.5 * g * (x + iy)`, default `g = sqrt(2)`.
The value of `g` is related to the value of `hbar` in the commutation
relation `[x, y] = i * hbar` via `hbar=2/g ** 2` giving the default
value `hbar=1`.
Returns
-------
corr_mat : ndarray
Array of complex numbers or Qobj's
A 2-dimensional *array* of covariance values for the field quadratures,
or, if rho=0, a matrix of operators.
"""
x1 = (a1 + a1.dag()) / g
p1 = -1j * (a1 - a1.dag()) / g
x2 = (a2 + a2.dag()) / g
p2 = -1j * (a2 - a2.dag()) / g
basis = [x1, p1, x2, p2]
return correlation_matrix(basis, rho)
[docs]def wigner_covariance_matrix(a1=None, a2=None, R=None, rho=None, g=np.sqrt(2)):
r"""
Calculates the Wigner covariance matrix
:math:`V_{ij} = \frac{1}{2}(R_{ij} + R_{ji})`, given
the quadrature correlation matrix
:math:`R_{ij} = \langle R_{i} R_{j}\rangle -
\langle R_{i}\rangle \langle R_{j}\rangle`, where
:math:`R = (q_1, p_1, q_2, p_2)^T` is the vector with quadrature operators
for the two modes.
Alternatively, if `R = None`, and if annihilation operators `a1` and `a2`
for the two modes are supplied instead, the quadrature correlation matrix
is constructed from the annihilation operators before then the covariance
matrix is calculated.
Parameters
----------
a1 : Qobj
Field operator for mode 1.
a2 : Qobj
Field operator for mode 2.
R : ndarray
The quadrature correlation matrix.
rho : Qobj
Density matrix for which to calculate the covariance matrix.
g : float
Scaling factor for `a = 0.5 * g * (x + iy)`, default `g = sqrt(2)`.
The value of `g` is related to the value of `hbar` in the commutation
relation `[x, y] = i * hbar` via `hbar=2/g ** 2` giving the default
value `hbar=1`.
Returns
-------
cov_mat : ndarray
A 2-dimensional array of covariance values.
"""
if R is not None:
if rho is None:
return np.array([[0.5 * np.real(R[i, j] + R[j, i])
for i in range(4)]
for j in range(4)], dtype=np.float64)
else:
return np.array([[0.5 * np.real(expect(R[i, j] + R[j, i], rho))
for i in range(4)]
for j in range(4)], dtype=np.float64)
elif a1 is not None and a2 is not None:
if rho is not None:
x1 = (a1 + a1.dag()) / g
p1 = -1j * (a1 - a1.dag()) / g
x2 = (a2 + a2.dag()) / g
p2 = -1j * (a2 - a2.dag()) / g
return covariance_matrix([x1, p1, x2, p2], rho)
else:
raise ValueError("Must give rho if using field operators " +
"(a1 and a2)")
else:
raise ValueError("Must give either field operators (a1 and a2) " +
"or a precomputed correlation matrix (R)")
[docs]def logarithmic_negativity(V, g=np.sqrt(2)):
"""
Calculates the logarithmic negativity given a symmetrized covariance
matrix, see :func:`qutip.continous_variables.covariance_matrix`. Note that
the two-mode field state that is described by `V` must be Gaussian for this
function to applicable.
Parameters
----------
V : *2d array*
The covariance matrix.
g : float
Scaling factor for `a = 0.5 * g * (x + iy)`, default `g = sqrt(2)`.
The value of `g` is related to the value of `hbar` in the commutation
relation `[x, y] = i * hbar` via `hbar=2/g ** 2` giving the default
value `hbar=1`.
Returns
-------
N : float
The logarithmic negativity for the two-mode Gaussian state
that is described by the the Wigner covariance matrix V.
"""
A = 0.5 * V[0:2, 0:2] * g ** 2
B = 0.5 * V[2:4, 2:4] * g ** 2
C = 0.5 * V[0:2, 2:4] * g ** 2
sigma = np.linalg.det(A) + np.linalg.det(B) - 2 * np.linalg.det(C)
nu_ = sigma / 2 - np.sqrt(sigma ** 2 - 4 * np.linalg.det(V)) / 2
if nu_ < 0.0:
return 0.0
nu = np.sqrt(nu_)
lognu = -np.log(2 * nu)
logneg = max(0, lognu)
return logneg